Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 11(32): 7707-7720, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37465918

RESUMEN

Dental resin composites are widely used as restorative materials due to their natural aesthetic and versatile properties. However, there has been limited research on the degradation mechanisms of these composites in gastric acid environments, which would be common in patients with gastroesophageal reflux. This study aims to investigate the degradation behavior of dental composites immersed in simulated oral environments, including acid, saliva, and water. Mechanical and morphological properties of the composites, upon immersion in the simulated environments, were thoroughly examined using hardness testing and SEM imaging. Qualitative analyses of the ions leached from the polymer matrix and fillers were conducted using XPS and ICP-MS. In addition, the thermodynamic stability of the inorganic fillers of the composites in aqueous solutions across a wide range of pH values was theoretically studied through construction of Pourbaix diagrams. This study proposed a mechanism for composite leaching involving interactions between the matrix's hydrophilic groups and the aqueous immersion media, leading to swelling and chemical degradation of the composites. Furthermore, it was demonstrated that filler leaching was followed by ion exchange with Ca and P, resulting in the formation of hard calcified layers on the composite surface. The current findings provide valuable insights into the development of new composite materials with improved durability and resistance to degradation, especially for patients suffering from gastroesophageal reflux.


Asunto(s)
Resinas Compuestas , Reflujo Gastroesofágico , Humanos , Agua/química
2.
J Mater Chem B ; 11(17): 3941-3950, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37067358

RESUMEN

Gallium (Ga) is a low melting point metal in the liquid state in the biological environment which presents a unique combination of fluidity, softness, and metallic electrical and thermal properties. In this work, liquid Ga is proposed as a biocompatible electrode material for cell culture by electro-stimulation since the cytotoxicity of Ga is generally considered low and some Ga compounds have been reported to exhibit anti-bacterial and anti-inflammatory activities. Complementarily, polydopamine (PDA) was coated on liquid Ga to increase the attachment capability of cells on the liquid Ga electrode and provide enhanced biocompatibility. The liquid Ga layer could be readily painted at room temperature on a solid inert substrate, followed by the formation of a nanoscale PDA coating layer resulting in a conformable and biocompatible composite electrode. The PDA layer was shown to coordinate with Ga3+, which is sourced from liquid Ga, providing electrical conductivity in the cell culture medium. The PDA-Ga3+ composite acted as a conductive substrate for advanced electro-stimulation for cell culture methods of representative animal fibroblasts. The cell proliferation was observed to increase by ∼143% as compared to a standard glass coverslip at a low potential of 0.1 V of direct coupling stimulation. This novel PDA-Ga3+ composite has potential applications in cell culture and regenerative medicine.


Asunto(s)
Galio , Polímeros , Animales , Polímeros/farmacología , Polímeros/química , Materiales Biocompatibles/farmacología , Galio/farmacología , Técnicas de Cultivo de Célula
3.
Small ; 19(4): e2204781, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36444515

RESUMEN

Many different types of inorganic materials are processed into nano/microparticles for medical utilization. The impact of selected key characteristics of these particles, including size, shape, and surface chemistries, on biological systems, is frequently studied in clinical contexts. However, one of the most important basic characteristics of these particles, their density, is yet to be investigated. When the particles are designed for drug delivery, highly mobile macrophages are the major participants in cellular levels that process them in vivo. As such, it is essential to understand the impact of particles' densities on the mobility of macrophages. Here, inorganic particles with different densities are applied, and their interactions with macrophages studied. A set of these particles are incubated with the macrophages and the outcomes are explored by optical microscopy. This microscopic view provides the understanding of the mechanistic interactions between particles of different densities and macrophages to conclude that the particles' density can affect the migratory behaviors of macrophages: the higher the density of particles engulfed inside the macrophages, the less mobile the macrophages become. This work is a strong reminder that the density of particles cannot be neglected when they are designed to be utilized in biological applications.


Asunto(s)
Macrófagos , Humanos , Tamaño de la Partícula , Macrófagos/ultraestructura
4.
ACS Nano ; 16(6): 8891-8903, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35613428

RESUMEN

Gallium (Ga) compounds, as the source of Ga ions (Ga3+), have been historically used as anti-inflammatories. Currently, the widely accepted mechanisms of the anti-inflammatory effects for Ga3+ are rationalized on the basis of their similarities to ferric ions (Fe3+), which permits Ga3+ to bind with Fe-binding proteins and subsequently disturbs the Fe homeostasis in the immune cells. Here in contrast to the classic views, our study presents the mechanisms of Ga as anti-inflammatory by delivering Ga nanodroplets (GNDs) into lipopolysaccharide-induced macrophages and exploring the processes. The GNDs show a selective inhibition of nitric oxide (NO) production without affecting the accumulation of pro-inflammatory mediators. This is explained by GNDs disrupting the synthesis of inducible NO synthase in the activated macrophages by upregulating the levels of eIF2α phosphorylation, without interfering with the Fe homeostasis. The Fe3+ transferrin receptor-independent endocytosis of GNDs by the cells prompts a fundamentally different mechanism as anti-inflammatories in comparison to that imparted by Ga3+. This study reveals the fundamental molecular basis of GND-macrophage interactions, which may provide additional avenues for the use of Ga for anti-inflammatory and future biomedical and pharmaceutical applications.


Asunto(s)
Galio , Galio/farmacología , Transferrina/metabolismo , Hierro/metabolismo , Homeostasis , Antiinflamatorios/farmacología
5.
ACS Appl Mater Interfaces ; 13(36): 43247-43257, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34459601

RESUMEN

Liquid metals and alloys with high-aspect-ratio nanodimensional features are highly sought-after for emerging electronic applications. However, high surface tension, water-like fluidity, and the existence of self-limiting oxides confer specific peculiarities to their characteristics. Here, we introduce a high accuracy nanometric three-dimensional pulling and stretching method to fabricate liquid-metal-based nanotips from room- or near-room-temperature gallium-based alloys. The pulling rate and step size were controlled with a resolution of up to 10 nm and yielded different nanotip morphologies and lengths as a function of the base liquid metal alloy composition and the pulling parameters. The obtained nanotips presented high aspect ratios over lengths of a few microns and apexes between 10 and 100 nm. The liquid metal alloys were found confined within nanotips with about 10 nm apexes when vertically pulled at 100 nm/s. An amorphous gallium oxide skin was shown to cover the surface of the nanotips, while the liquid core was composed of the initial liquid metal alloys. The electrical contact established at the nanotips was characterized under dynamic conditions. The liquid metal nanotips showed an Ohmic resistance when a continuous liquid metal channel was formed, and a controllable semiconductor state corresponding to a heterojunction formed at the junction between the liquid metal phase and the gallium oxide semiconductor skin. The variable threshold voltages of the heterojunction were controlled via stretching of the nanotips with a 10 nm step resolution. The liquid metal nanotips were also used for establishing soft electronic junctions. This novel method of liquid metal nanotip fabrication with Ohmic and semiconducting behaviors will lead to exciting avenues for developing electronic and sensing devices.

6.
Nanoscale ; 13(14): 6764-6771, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33885478

RESUMEN

The architectural design of nanocatalysts plays a critical role in the achievement of high densities of active sites but current technologies are hindered by process complexity and limited scaleability. The present work introduces a rapid, flexible, and template-free method to synthesize three-dimensional (3D), mesoporous, CeO2-x nanostructures comprised of extremely thin holey two-dimensional (2D) nanosheets of centimetre-scale. The process leverages the controlled conversion of stacked nanosheets of a newly developed Ce-based coordination polymer into a range of stable oxide morphologies controllably differentiated by the oxidation kinetics. The resultant polycrystalline, hybrid, 2D-3D CeO2-x exhibits high densities of defects and surface area as high as 251 m2 g-1, which yield an outstanding CO conversion performance (T90% = 148 °C) for all oxides. Modification by the creation of heterojunction nanostructures using transition metal oxides (TMOs) results in further improvements in performance (T90% = 88 °C), which are interpreted in terms of the active sites associated with the TMOs that are identified through structural analyses and density functional theory (DFT) simulations. This unparalleled catalytic performance for CO conversion is possible through the ultra-high surface areas, defect densities, and pore volumes. This technology offers the capacity to establish efficient pathways to engineer nanostructures of advanced functionalities for catalysis.

7.
ACS Nano ; 14(10): 14070-14079, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32916049

RESUMEN

Although it remains unexplored, the direct synthesis and expulsion of metals from alloys can offer many opportunities. Here, such a phenomenon is realized electrochemically by applying a polarizing voltage signal to liquid alloys. The signal induces an abrupt interfacial perturbation at the Ga-based liquid alloy surface and results in an unrestrained discharge of minority elements, such as Sn, In, and Zn, from the liquid alloy. We show that this can occur by either changing the surface tension or inducing a reversible redox reaction at the alloys' interface. The expelled metals exhibit nanosized and porous morphologies, and depending on the cell electrochemistry, these metals can be passivated with oxide layers or fully oxidized into distinct nanostructures. The proposed concept of metal expulsion from liquid alloys can be extended to a wide variety of molten metals for producing metallic and metallic compound nanostructures for advanced applications.

8.
Nano Lett ; 20(6): 4403-4409, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32369376

RESUMEN

Metallic foams, with intrinsic catalytic properties, are critical for heterogeneous catalysis reactions and reactor designs. Market ready catalytic foams are costly and made of multimaterial coatings with large sub-millimeter open cells providing insufficient active surface area. Here we use the principle of nanometallurgy within liquid metals to prepare nanostructured catalytic metal foams using a low-cost alloy of bismuth and tin with sub-micrometer open cells. The eutectic bismuth and tin liquid metal alloy was processed into nanoparticles and blown into a tin and bismuth nanophase separated heterostructure in aqueous media at room temperature and using an indium brazing agent. The CO2 electroconversion efficiency of the catalytic foam is presented with an impressive 82% conversion efficiency toward formates at high current density of -25 mA cm-2 (-1.2 V vs RHE). Nanometallurgical process applied to liquid metals will lead to exciting possibilities for expanding industrial and research accessibility of catalytic foams.

9.
ACS Appl Mater Interfaces ; 12(17): 20119-20128, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32264673

RESUMEN

Liquid metals are fast becoming a new class of universal and frictionless additives for the development of multifunctional soft and flexible materials. Herein, nanodroplets of eutectic gallium-indium alloy, which is liquid at room temperature, were used as a platform for the formulation of electrically conductive and magnetically responsive gels with the incorporation of Fe3O4 nanoparticles. The nanoadditives were prepared in situ within a water-based solution of polyvinyl alcohol. A borax cross-linking reaction was then performed to yield multifunctional flexible and self-healing gels. The physicochemical properties and changes in the nanoadditives at each step of the gel preparation method were characterized. Oxidation and complexation reactions between the liquid metal and iron oxide nanoadditives were observed. A mixture of nanosized functional magnetic Fe3O4/Fe2O3 and In-Fe oxide complexes was found to enable the magnetic susceptibility of the gels. The mechanical and self-healing properties of the gels were assessed, and finally, this flexible and multifunctional material was used as an electronic switch via remote magnetic actuation. The developed conductive and magnetic gels demonstrate great potential for the design of soft electronic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...